专利摘要:
本發明方法係關於使用經硫化預處理之觸媒來進行乙苯轉化及二甲苯異構化。
公开号:TW201323080A
申请号:TW101128745
申请日:2012-08-09
公开日:2013-06-16
发明作者:Chunshe Cao;Jeffrey L Andrews;Michel Molinier
申请人:Exxonmobil Chem Patents Inc;
IPC主号:C07C5-00
专利说明:
對二甲苯之製造[主張之優先權]
本申請案主張於2011年8月31日提出之臨時申請案第61/529,519之權益,該案之全部揭示內容以引用方式併入本案。
本發明係關於二甲苯異構化且更特別是關於一種可用於此之觸媒的處理方法及二甲苯異構化之起動程序。
對二甲苯(亦可寫成"對-二甲苯"或"PX")一般被認為是C8芳香族異構物中最重要者,其可用來當作多種終端用品諸如合成纖維及製瓶塑膠之中間體或原料。對二甲苯典型地係得自C8芳香族烴類混合物,該等混合物係衍生自藉包括芳香族萃取及分餾等程序所得之重組油。雖然此起始的C8芳香族烴類混合物之組成差異很大,不過該混合物一般含有5到40 wt%乙苯,其餘部份則為二甲苯類,該等二甲苯類可分為約50 wt%之間-二甲苯及各25 wt%之對-二甲苯及鄰-二甲苯(此種分佈被認為是二甲苯類的公稱"平衡濃度")。由於,根據某些報告,80 wt%或更多之二甲苯類之終端用途涉及將對-二甲苯轉化成上述之終端用品,所以從間-二甲苯、鄰-二甲苯及乙苯等C8異構物製得對-二甲苯乃為眾多持續研究之目標。
舉例來說,美國專利第5,004,855號教示一種於芳香族烴類混合物中轉化乙苯之方法,其包含於存在氫氣下置入含有乙苯及諸二甲苯之C8芳香族烴類混合物且與含有錸之觸媒(一種酸類型沸石,其主孔洞入口係由10-員氧環所組成)及礬土接觸,該觸媒已接受過硫化處理,以有效地把乙苯轉化成苯。於諸具體例中,該乙苯轉化步驟係在進料通過循環系統之前進行且與含有對-二甲苯分離及二甲苯異構化之循環系統分隔開來。
於美國專利第5,516,956號,含有乙苯及至少一種二甲苯之芳香族烴類混合物係使用一種雙成份觸媒系統來異構化,將該乙苯轉化成可從該芳香族烴類流中移除掉之化合物及製得對-二甲苯濃度約等於該對位-異構物平衡濃度之產物流。第一觸媒包含一中等孔隙度大小之沸石,其可有效地把乙苯轉化;及第二觸媒包含一中等孔隙度大小之沸石,其進一步地具有小型結晶尺寸且可有效催化二甲苯異構化。本發明之任一觸媒可含有一或多個氫化成份。
於美國專利第6,028,238號,描述一種把含有乙苯及二甲苯之進料異構化之方法,該方法包含的步驟有:(a)於乙苯轉化條件下用含有限制指數1-12之分子篩的微粒狀第一觸媒成份與該進料接觸,該第一觸媒成份之粒子具有指定的表面積對體積比且該接觸步驟會轉化進料內之乙苯而形成乙苯-耗乏產物;及而後(b)於二甲苯異構化條件下用第二觸媒成份與該乙苯-耗乏產物接觸。
二甲苯異構化觸媒之硫化改質係教示於美國專利第7,271,118號。該觸媒含有第VIII族金屬(係指傳統的"CAS版本"之週期表)。
於先前技術之方法例如上述之美國專利第6,028,238號中,對二甲苯-耗乏之C8芳香族進料(意指該對二甲苯之份量係少於以上描述之平衡濃度)係與一觸媒系統接觸,該觸媒系統把乙苯脫烷基化成苯且同時把二甲苯類異構化成均衡混合之二甲苯產物。該乙苯脫烷基化及二甲苯異構化反應係於雙床觸媒系統有利地完成。然而,於工商業施行時此等單元通常在一開始的注油(oil-in)期間(該觸媒與進料接觸)就遭受大量的起動放熱。尤其當液體進料泵無法在短時間內把烴流流速提升到總設計性能時會發生極度床溫陡升現象。所產生之高氫對烴(H2/HC)莫耳數比及高氫分壓促使發生氫-脫烷基化及氫解反應,其係由該觸媒系統內之氫化金屬成份所催化,其反過來導致過量反應熱產生。在工商業應用時,此等起動放熱之其他不良影響有導致單元提前關機(premature unit shutdown)、設備機械性故障、不良的異構化效能、縮短觸媒壽命及二甲苯流失。
最好能減輕該起動放熱現象,以避免該等不良影響及維持二甲苯異構化觸媒之高效能特性。
本案諸發明者令人驚訝地揭露一種觸媒預處理及起動步驟,其可克服先前技術系統之缺失。
本發明係關於減輕對二甲苯製造過程起動時的大量放熱現象,其包含把C8芳香族烴類進料與一觸媒系統接觸,該觸媒在與該進料接觸前先已先經硫化處理。
於具體例中,本發明包含處理含有氫化金屬之已乾燥及還原之觸媒以硫化至少一部份金屬。於較佳具體例中,該觸媒係在注油前先用稀釋的H2S氣體於高溫高壓下處理。
本發明之一項目標係在提供一種把乙苯轉化成苯及將二甲苯類異構化之方法,其係使用含有氫化金屬之觸媒從C8芳香族烴類混合物製造對二甲苯而避免起動期間高度放熱的不良影響。
本發明之另一項目標為提供一種製造對二甲苯之方法,其包含於C8芳香族烴混合物中把乙苯轉化成苯且有較低的二甲苯流失率。
此等目標及其他目標、特性及優點在參考以下詳細說明、較佳具體例、實例及後附申請專利範圍以後即顯而易知。 詳細說明
本發明關於從C8芳香族烴類流製造對二甲苯之改良方法,其包含在觸媒與進料接觸之前先行硫化(“預硫化”)該觸媒而減少起動時的大量放熱。
於具體例中,該方法包含於高溫高壓下用稀釋之H2S氣來處理已乾燥及還原之觸媒。
無意用理論加以束縛,不過一般認為H2S分子係化學性地吸附在異構化觸媒之金屬成份的表面而形成一層金屬硫化物。此等金屬硫化物在芳香族環飽和化及烷烴氫解時具有極少活性或不具活性。因此,當烴類被引入反應槽系統時,反應放熱會被降至最低。然而,由於該等金屬硫化物在接觸芳香族烴類進料之後的強還原性環境(於油內("on-oil"))中並不穩定,所以該觸媒金屬功能之鈍化為時很短且該活性抑制或毒化影響係可逆的。故而,於預處理步驟中形成之該等金屬硫化物將被還原,且在芳香族烴類引入之後於高溫高壓與持續不斷的氫氣循環下,硫將從該觸媒表面解吸出來。因此長期的觸媒活性及選擇性將不會受到不良影響。
該觸媒成份包含一氫化成份、分子篩及撐體例如礬土或黏土,該氫化成份可由例如一或多種金屬來提供,該等金屬係選自第7族(例如錸)或第8-10族(例如鉑;以前的"第VIII族")-採用週期表諸族現在的稱呼。
於較佳具體例中,該氫化成份為錸(Re);於其他具體例中,該觸媒並未用諸如矽土予以預選擇化處理過(pre-selectivated)(不過其可經蒸汽處理,如下文更詳細討論地);於其他具體例中該觸媒係用此技術本身已知之方法例如擠製、壓製及滾壓成形來模製。該等具體例可加以組合,舉例來說,一較佳具體例為一含錸觸媒,該觸媒在硫化以前未經矽土預選擇化處理且係呈模製形式。
大致上,所用之硫化法可為於高於室溫到540℃,較佳地100℃到450℃以硫化氫氣流把該氫化成份轉化成硫化物之任何方法。硫化處理之時間並不特別嚴苛,不過該處理應於氫化成份已被支撐在觸媒上之後才進行,該等方法本身乃為此技術習知。把該成份施加到觸媒上之較佳方法包括浸漬、離子交換或混合。
一般來說,進料可包含含有乙苯及至少一種二甲苯異構物及典型地所有三種二甲苯異構物之芳香族C8混合物。於具體例中,該進料流為對-二甲苯-耗乏之物流,意指進料流中對-二甲苯相對於諸C8異構物之濃度係低於對-二甲苯於C8異構物之混合物的熱力學平衡濃度。於具體例中,該進料流中乙苯含量為5到60 wt%之概略範圍,鄰位-二甲苯含量為0到35 wt%之概略範圍,間位-二甲苯含量為20到95 wt%之概略範圍及對位-二甲苯含量為0到15 wt%之概略範圍。
此外,含有C8芳香族烴類之進料流可含有非-芳香族烴類,例如環烷類及石蠟類,其含量例如最多30wt%。
於較佳具體例中,本發明提供一種處理含有C8芳香族烴類之起始混合物(例如來自催化性重組石油腦得到之C8芳香族烴類混合物)來製得相對於該起始混合物有較低乙苯含量及較高對二甲苯含量之C8芳香族烴類之產物混合物之方法,該方法具有至少一項以下優點:較長的觸媒壽命、較長的油內(on-oil)時間、較低的二甲苯流失率及較高的對二甲苯回收率。本發明能特別有效地處理C8芳香族烴類之對二甲苯貧混合物,而把該對二甲苯之濃度提高到約熱平衡程度。
本發明方法特別適合用來異構化含有約5到60 wt%乙苯,例如約8到15 wt%乙苯之C8芳香族烴類流。此範圍橫跨來自重組器及裂解汽油單元之液流的乙苯濃度範圍。於某些具體例中,本發明之經預硫化觸媒被認為對於未經萃取之C8芳香族液流中存在之正鏈及分支性石蠟類有高裂解活性之優點。
本發明之觸媒系統包括至少兩觸媒成份,其第一成份具有能把進料流中的乙苯選擇性地脫乙基化成苯之第一功能,而該第二觸媒成份能選擇性地異構化進料中之諸二甲苯。該第一觸媒成份能且較佳地會把進料內之諸二甲苯稍微異構化。此等觸媒系統及個別成份本身為此技術習知及可由熟習本發明揭示所屬之技術領域之一般技術人士來選擇。特佳的系統係揭露於例如前述之美國專利第5,516,956號及第6,028,238號,留意此等揭示內容之教示。
於具體例中,各第一及第二觸媒成份含有一中等孔隙度大小之分子篩,其特徵為限制係數的概略範圍為1到12(例如,孔隙大小小於約7埃,像是從約5埃到小於約7埃)。術語"限制係數"乃此技術習知。限制係數測定之方法完整地述於美國專利第4,016,218號,該方法之詳細內容以引用方式併入本案。可用於本發明之中等孔隙度分子篩之實例包括ZSM-5(美國專利第3,702,886號及Re.29,948);ZSM-11(美國專利第3,709,979號);ZSM-12(美國專利第3,832,449號,ZSM-22(美國專利第4,556,477號);ZSM-23(美國專利第4,076,842號);ZSM-35(美國專利第4,016,245號);ZSM-38(美國專利第4,406,859號);ZSM-48(美國專利第4,397,827號);ZSM-57(美國專利第4,046,685號);及ZSM-58(美國專利第4,417,780號)。
各第一及第二觸媒成份之分子篩也可併有至少一種氫化成份。此等成份之實例包括以上討論過之金屬(即,選自第7-10族之金屬),還有來自第6族(即Cr、Mo、W)、第11族(即Cu、Ag、Au)、第14族(即Sn及Pb)及第15族(即Sb及Bi)金屬之氧化物、氫氧化物、硫化物或游離金屬(即0價)形式。可採用此等貴金屬或非貴金屬之觸媒形式之組合例如Pt及Sn之組合。該金屬較佳地係在已還原之原子價狀態,例如此成份係呈氧化物或氫氧化物形式。此金屬之已還原原子價狀態可用此技術本身已知之方法製得,例如在加入反應槽之進料中納入還原劑例如氫來原地製得。於較佳具體例中該金屬為錸且其於硫化前在乾燥觸媒中係呈還原狀態。
要把氫化成份併入觸媒時,較佳地該成份係用離子交換、浸漬或物理性混合併入該觸媒。例如,可用適當的金屬鹽類溶液於足以混合諸個別成份之條件下與剩餘的觸媒成份(分子篩及撐體例如礬土及/或黏土)接觸,該等觸媒成份較佳地未經矽土選擇化處理。該含金屬之鹽類較佳地為水溶性。適當的鹽類實例包括過錸酸(HReO4)。適當的製備方法還包括錸氧化物水溶液之使用,例如揭示於美國專利第5,004,855號者。在合併金屬以後,接著可把觸媒過濾、用水洗及用約250到約500℃之溫度煅燒。於具體例中,而後如此製得之已乾燥及煅燒之觸媒在硫化以前被裝入反應槽中、被乾燥及然後例如用流動氫氣來還原。
該氫化成份之份量適當地為約0.001到約10重量%,例如為約0.1到約5重量%,再如為約0.1到約2重量%,不過當然地此份量將隨著該成份之性質及其他因素而有所不同,如同熟習本揭示所屬技術領域之技術人士所理解地且此等份量可由該等技術人士調整而達到最佳效果。
上述之已乾燥及煅燒觸媒(其含有分子篩、氫化成份及任意地撐體例如礬土及/或黏土)之製備並未構成本發明本身之必要部份且在普通技術人士之技術範圍內只需透過例行試驗即可製得。
在施行本發明之方法時,可能需要把該第一或第二觸媒成份之任一者或兩者與能耐受溫度及其他製程條件的另一材料例如撐體或基質調配在一起。此等基質材料包括合成或天然物質以及無機材料例如黏土、矽土及/或金屬氧化物。該等金屬氧化物類可為天然形式或為含有矽土及金屬氧化物類混合物之膠狀沉澱或凝膠形式。天然黏土(其可與分子篩複合在一起)包括蒙脫石及高嶺土族類,該等族類包括次皂土類及高嶺土類常見的有例如Dixie、McNamee、Georgia及漂白土或者其他主要礦物質成份為埃洛石、高嶺石、地開石、珍珠陶土或多矽高嶺石者。此等黏土可依初始礦藏之原始狀態來使用或初步接受煅燒、酸處理或化學改質後使用。
除了前述材料以外,在此採用之分子篩可與多孔性基質材料例如礬土、矽土-礬土、矽土-鎂礬土、矽土-鋯土、矽土-釷土、矽土-氧化鈹、矽土-鈦白以及三元化合物例如矽土-礬土-釷土、矽土-礬土-鋯土、矽土-礬土-鎂礬土及矽土-鎂礬土-鋯土等複合在一起。此等成份之混合物也可使用。該基質可為水凝膠(cogel)形式。於無水基礎上該分子篩成份及無機氧化物凝膠基質之相對比例變化很大,於具體例中分子篩含量範圍可為該乾燥複合體之約1到約99重量%及更常見的範圍為約10到約80重量%。
本發明觸媒系統之第一及第二成份應加以選擇,使得其個別成份於多種重要性質有所差異,以確保該第一成份能選擇性地把進料流內之乙苯脫乙基化成苯而該第二成份能選擇性地把進料內之二甲苯類異構化。雖然欲硫化觸媒之選擇細節係在本發明揭示所屬領域之一般人士的技術範圍內,不過仍於下文討論其某些較佳特性。
於具體例中,本發明觸媒系統之第一及第二成份之具體形式及大小皆有不同。該第一觸媒成份較佳地係由表面積對體積比約80到約200英吋-1之顆粒組成,而該第二觸媒成份典型地係由表面積對體積比小於80英吋-1之顆粒所組成。
乙苯轉化成份:根據本發明之具體例,該第一觸媒成份,其能選擇性地把進料流中之乙苯脫乙基化成苯,係經過選擇使其表面積對體積比為約80到<200英吋-1,較佳地為約100到150英吋-1。人們已發現該乙苯轉化反應對粒子內(大孔隙)擴散限制很敏感。藉著選擇該第一觸媒成份顆粒之形狀及大小使得表面積對體積比在指定範圍內,人們發現粒子內擴散距離被減少但不會過度增加整個第一觸媒床之壓降。從而,能降低於該第一觸媒床內乙苯轉化伴隨之二甲苯流失率,同時還提高該第一觸媒成份之二甲苯異構化活性。製造具有所需表面積對體積比之第一觸媒成份可藉由控制該觸媒顆粒大小或使用塑形之觸媒顆粒(例如述於美國專利第4,328,130號之有溝槽柱狀擠製物或者述於美國專利第4,441,990號之中空或實心的多葉狀擠製物,將這兩件專利之全部內容以引用方式併入本案)輕易地達成。例如,直徑1/32英吋及長度3/32英吋之柱狀觸媒顆粒其表面積對體積比為141,而外形如美國專利第4,441,990號第4圖所揭示且最大橫切面為1/16英吋及長度3/16英吋之四葉實心擠製物其表面積對體積比為128。外徑1/10英吋、內徑1/30英吋及長度3/10英吋之中空管狀擠製物其表面積對體積比為136。
於具體例中,該第一觸媒成份較佳地具有加強之大孔隙性,其可藉著在擠製觸媒顆粒之混合物中加入熱可分解性有機材料,且然後煅燒該等擠製顆粒以除去該有機材料來達成。該熱可分解性有機材料可為與形成觸媒顆粒之可擠製混合物互容之任何材料且其可留在擠製觸媒顆粒之質塊內但可藉著加熱從觸媒顆粒中除去而在該等顆粒內留下大孔隙空洞。一種適當的有機材料為以商品名Avicel販售之纖維素。
於具體例中,該第一觸媒成份之分子篩較佳地比該第二觸媒成份之分子篩有更高的酸活性(及因而更高的α值)。於是該第一觸媒成份之分子篩較佳地α值為至少50且典型地α值為約100到約500。最佳地,該第一觸媒成份之分子篩的α值係在100到300之間。α測試係述於美國專利第3,354,078號;於Journal of Catalysis,Vol.4,p.527(1965);Vol.6,p.278(1966);及Vol.61,p.395(1980),以上關於α測試之說明以引用方式併入本案。在此所用測試之實驗性條件包括定溫538℃及可變流速如Journal of Catalysis,Vol.61,p.395所述。較高的α值相當於活性更高之裂解觸媒。觸媒酸性之修改可藉著把該觸媒與高溫蒸汽接觸來達成。所需之酸性(α值)程度可用熟習此技術人士習知之方式藉著控制蒸煮溫度及時間長短來達成。
於具體例中,本發明觸媒系統之各個成份通常會展現出相互排擠之二甲苯擴散性質。此等性質可藉由記錄於120℃及鄰-二甲苯分壓為4.5±0.8 mm水銀柱下吸附30%鄰-二甲苯之平衡容量所需時間(以分鐘計)來確定,該測試述於美國專利第4,117,026號、第4,159,282號及Re.31,782。該鄰-二甲苯之平衡容量在此係定義成每100克分子篩有大於1克二甲苯(類)。於本發明之觸媒系統中,能有效進行乙苯轉化之第一觸媒成份較佳地鄰-二甲苯吸附時間(以分鐘計)大於約50分鐘且較佳地大於約1200分鐘,但小於10,000分鐘,然而另一方面,該第二異構化成份較佳地鄰-二甲苯吸附時間小於約50分鐘且較佳地小於約10分鐘。
於具體例中,該第一觸媒成份之二甲苯擴散性質可用多種方式達成。當鄰-二甲苯擴散時間為最小值50分鐘或者接近該最小值時,選擇大結晶形式(即,平均結晶大小大於1微米)之分子篩用於該觸媒可能就夠了。
該觸媒系統之第二成份能有效異構化含有C8芳香族之進料內的二甲苯類。該第二異構化成份較佳地鄰-二甲苯吸附時間宜小於約50分鐘且更佳地小於約10分鐘。此性質典型地可藉著在此成份中採用平均結晶大小0.02-0.05微米之小結晶尺寸分子篩而達成。該觸媒系統之第二成份之分子篩典型地α值小於約50且較佳地為約5到約25。該觸媒系統之第二成份可採用熱可分解性有機材料以增加其大孔隙度來製得。此外,該第二觸媒成份顆粒之大小及形狀可加以選擇,使得其表面積對體積比為約80到<200英吋-1,較佳地為約100到150英吋-1
依照前述方法來製備觸媒以後,把該觸媒根據本發明方法硫化。較佳地該觸媒係原地硫化。於具體例中,該處理包含於高溫例如高於室溫到約500℃下,較佳地於100℃到450℃下,以含有100-600 vppm H2S氣體之流動氫氣處理。通常係使用液態DMDS(二甲基二硫化物)當作硫化劑。DMDS一旦進入反應槽中會立刻分解成H2S及甲烷。硫化程度較佳地需加以選擇使其觸媒金屬含量達到0.5到3.0當量。
剛注油時反應條件例如WHSV值及H2:HC值可由本發明揭示所屬技術領域之一般技術人士透過例行實驗即可決定。關於這一點,有助益地宜牢記於營利性工廠中,典型地液體進料泵係無法在短時間內讓烴料流速提升到總設計供量。如此一來導致低WHSV值及高氫對烴莫耳數比及高氫分壓,其會促使氫化成份例如Re催化氫-脫烷基化及氫解反應,而產生過多反應熱。
當本發明之經預硫化觸媒系統與進料流接觸時,本發明方法採用之反應條件並未狹隘地定義,不過一般包括溫度為約400到約1,000℉(約204℃到約537℃),壓力為約0到約1,000 psig(6.895 MPa-g),重量時空速度(weight hourly space velocity,WHSV)為約0.1到約200 hr-1及氫(H2)對烴(HC)莫耳數比為約0.2到約10。較佳地,反應條件包括溫度為約650到約850℉(約340-450℃),壓力為約50到約400 psig(約0.34到2.76 MPa-g),WHSV值為約3到約50 hr-1及H2對HC莫耳數比為約1到約5。
一般來說,本發明方法係於含有以上所述觸媒系統之固定床反應槽中進行。於較佳具體例中,該觸媒系統之第一及第二成份係於單一反應槽內之連續床內。亦即,於本發明方法所用之觸媒系統中能有效進行乙苯轉化之成份形成第一床,而該觸媒系統能有效進行二甲苯異構化之另一成份則形成於該第一床下游之第二床。進料較佳地係從該第一床串接流注至第二床而無輕氣體介入分離。另一選擇地,該第一床及第二床可被置放在分開的反應槽內,若有需要,這兩個槽可用不同操作條件運作。在本發明之第一及第二觸媒成份之前或之後還可加入更多的觸媒床。
經過轉化步驟以後,該異構化產物可被處理以分離出對二甲苯及/或其他所需的二甲苯(類)。因此,例如,該異構油產物可被饋送至多種對二甲苯回收單元,例如結晶器、薄膜分離單元或選擇性吸附單元(例如ParexTM單元),如此一來可把對二甲苯分離及回收,留下對二甲苯耗乏之C8芳香族烴類副產物或殘餘的異構油(isomerate)。從殘餘異構油中除去比C8芳香族烴類更輕之產物。殘餘的異構油中比C8芳香族烴類更重的產物則可進一步加工或被分餾出來。已除去對二甲苯之C8芳香族烴類餾份可被回收至反應。
此等方法成功之處已彰顯於試驗工廠及工商業營利單位。起動放熱已成功地被降至最小,其使觸媒有更佳效能。以下實施例意圖顯示本發明但並未對其加以限制。熟習本發明揭示所屬技術領域之一般技術人士將了解本發明可用以下具體顯示以外的其他方式來施行。 實施例1
該等實驗係在試驗工廠規模之固定床單元中進行。該反應槽之觸媒筐為0.64”ID及17.5”長。觸媒筐裝有二甲苯異構化觸媒擠製物。頂床為1/20”四葉狀擠製物,其含有Re支撐於ZSM-5分子篩及黏合劑所組成之實心擠製物上。底床為1/16”柱狀擠製物,其含有Re支撐於ZSM-5分子篩及黏合劑組成之實心擠製物上。該雙床觸媒係以35/65床重量比(第一觸媒:第二觸媒)裝在該反應槽筐中。裝入之新鮮觸媒總量為15.5 g。反應槽空洞用惰性玻璃珠填滿及使用80/120篩目之石英砂充填觸媒床間隙空間。採用此等措施使反應物氣流溝流現象降至最低。該反應槽配備有熱井(1/8”OD),以允許游動熱耦沿著床軸記錄觸媒溫度,因而可得到平均反應槽溫度(ART)。
進料為商用等級對二甲苯-耗乏之二甲苯類混合物,其含有16.2 wt%乙苯、1.9 wt%對-二甲苯、15.3 wt%鄰-二甲苯及64.7 wt%間-二甲苯,以及1.2 wt%甲苯。
該等觸媒先於氫氣流進行溫度程序化還原,接著透過硫化進行金屬鈍化步驟來活化。
在觸媒被預硫化時,反應槽床於引入H2S流前係維持在終還原溫度(365℃)。該硫化過程係使用含硫氣體混合物(H2及H2S)。於該氣體混合物中H2S濃度為400 vppm。硫化氣體流速及硫化時間係設定成能提供化學計量性錸原子覆蓋率之1.9倍(該化學吸收作用假設會形成ReS2化合物)。H2S飆高(breakthrough)(>100 vppm H2S)可在反應槽出口用德爾格氣體快速檢測儀(Draeger tube)偵測到。
該單元接著以5.4 hr-1之低重量時空速度(weight hourly space velocity,WHSV)(其約為設計性能之20-50%)和9:1之高氫對烴莫耳數比(H2/HC)(係模擬工商營利單位之起動條件)引入進料來起動。該進料速度會逐漸增加而H2/HC則降低。
第1圖顯示注油(oil-in)期間沿著觸媒床縱長之多個位點的觸媒溫度變化。整個注油期間並沒有觀察到放熱現象。用來直接比較地,當觸媒未經硫化而其他因素皆採相同條件時,最初引入進料會導致大量放熱,如第2圖所示般。
第3、4及5圖顯示本發明之經預硫化觸媒及剛經還原之非經預硫化觸媒間之效能比較結果。該經預硫化觸媒顯示出同等的乙苯(EB)脫烷基化活性(第3圖),更高的對二甲苯趨近平衡率(paraxylene approach to equilibrium,PXAE)(第4圖),以及同等的或略低的二甲苯流失率(第5圖)。此外,約30-天之陳化測試則顯示出經預硫化觸媒與非經預硫化觸媒顯現出同樣的陳化速度。此結果確定預硫化並不會對觸媒長期表現產生任何不良影響。 實施例2
於工商營利單位A實施本發明之預硫化方法。所用硫化劑為二甲基二硫化物(DMDS)液體。注入設備係由置於磅秤上之DMDS儲桶、兩個正排量泵及相關不銹鋼管路所組成。剛製得之二甲苯異構化觸媒的預硫化處理係在該觸媒乾燥完成後立刻進行。觸媒床係維持在359℃之高溫下。
一旦把DMDS注入反應槽中,該DMDS就會分解成H2S及CH4。該DMDS注入率係設定成能於反應槽入口提供500 vppm(有時稱為ppmV,或體積百萬分率)H2S。循環氣體透過德爾格氣體快速檢測儀來監測H2S飆高現象。注入之總硫量相當於1當量之觸媒金屬含量。於商用觸媒預硫化期間偵測到H2S飆高現象(於循環氣體中H2S>100 vppm)。於DMDS注入期間並未察覺到反應槽內有溫度升高情形。
預硫化以後立刻開始注油。初始進料速度為設計量之65%且最初的H2/HC比為約1.8:1。相較於先前新鮮觸媒起動時的放熱,經預硫化觸媒之濕式放熱很溫和。該放熱(最高床T-入口T)為10-17℃,且觀察到之最高床溫為371℃。相較於觸媒未經硫化時,其先前起動階段之最高溫度為590-700℃。
表1顯示經預硫化觸媒及未經硫化觸媒於相同操作條件及運行時間下起動放熱之性能比較結果。經預硫化觸媒如標準化平均反應槽溫度(NART)測量所顯示地有更高的EB脫烷基活性、更高的對二甲苯趨近平衡率(PXAE)及同等的二甲苯流失率。
實施例3(工商營利單位B)
於工商營利單位B,係採用獨立的DMDS注入設備在觸媒乾燥及還原完成後立刻且同時地把硫引入兩平行之反應槽中。預硫化係在反應槽溫度360℃及入口壓力1.3 MPa下進行。該DMDS注入率係設定成能於反應槽入口提供500 vppm H2S濃度。於預硫化期間頻繁地監測循環氣體H2S濃度。在注入2X硫當量(基於金屬原子含量)以後立刻開始引入烴進料。於循環氣體中並未偵測到H2S飆高現象。無意用理論來束縛,不過一般認為較大的反應槽金屬表面積及進料/排放流熱交換器吸收掉更多的硫。
初始進料速度為設計量之28%。相對於設計量更低之WHSV於恆定的循環氣體流速下會提供高H2/HC值。這兩者典型地造成更多放熱。該H2/HC比值為約6。在注油後觀察到非常少的濕式放熱(<5℃)。相較於先前的起動期間反應槽床溫度則大增120-135℃。
表2顯示經預硫化觸媒及未經硫化觸媒其起動放熱之性能比較結果。經預硫化觸媒顯示出更高的EB脫烷基活性(低NART)、更高的對二甲苯趨近平衡率(PXAE)及同樣或更低的二甲苯流失率。
根據上述說明以及包括較佳具體例及詳細實例所提供之多個細節,將理解對於熟習此技術之一般人士而言多種其他修正係明顯可知的且可在不悖離本發明之精神及範疇下輕易地達成。
在此使用之商品名稱係用TM符號或®符號表示,其代表此等名稱已受特定商標權利之保護例如其可能已在多種不同的管轄單位註冊商標。所有的專利及專利應用、測試步驟(例如ASTM方法、UL方法等等)及在此引用之其他文獻在其揭示與本發明不相矛盾以及所有管轄單位允許之合併情況下全部以引用方式併入本案。當在此列示出數字性下限及數字性上限時,係意圖涵蓋任何下限到任何上限間之範圍。
第1圖為觸媒床之溫度變化圖,其顯示使用本發明之觸媒沒有起動放熱。
第2圖為觸媒床之溫度變化圖,其顯示使用剛經還原之觸媒有大量的起動放熱。
第3圖顯示經預硫化觸媒及剛經還原觸媒之間的脫烷基活性之效能比較。
第4圖顯示經預硫化觸媒及剛經還原觸媒之間的PX選擇性之效能比較。
第5圖顯示經預硫化觸媒及剛經還原觸媒之間的二甲苯流失率之效能比較。
权利要求:
Claims (10)
[1] 一種製備對二甲苯之方法,其包含:(a)把含有乙苯及至少一種對二甲苯以外之二甲苯異構物的C8芳香族烴類混合物於存在氫及於適當的乙苯脫烷基化條件下與至少一第一觸媒接觸,而形成乙苯-耗乏之芳香族烴類混合物,該觸媒含有至少一第一氫化成份,其中該氫化成份係選自週期表之第6-11族及第14-15族,較佳為錸,該成份係支撐於分子篩上,其中該觸媒適用於乙苯之脫烷基化且其進一步的特徵為其在進行該接觸前已接受過硫化處理;然後(b)把該乙苯-耗乏之C8芳香族烴類混合物於存在氫及於適當的二甲苯異構化條件下與至少一第二觸媒接觸,而製得相較於步驟(a)之C8芳香族烴類混合物為對二甲苯-經富化的C8芳香族烴類混合物,該觸媒含有至少一第二氫化成份,較佳為錸,該成份係支撐於分子篩上,其中該觸媒適用於二甲苯異構化且其進一步的特徵為其在進行該接觸前已接受過硫化處理。
[2] 如申請專利範圍第1項之方法,其中於步驟(a)及(b)中至少一者的硫化處理係在硫化氫氣流中於溫度100℃到450℃下進行。
[3] 如申請專利範圍第1項之方法,其中該等第一及第二觸媒中至少一者係未經矽土-選擇化處理。
[4] 如申請專利範圍第1項之方法,其中該等第一及第二觸媒中至少一者係於硫化處理之前經蒸汽處理。
[5] 如申請專利範圍第1項之方法,其中該等第一及第二觸媒各含有以限制指數(Constraint Index)在1至12之範圍為其特徵的中等孔隙度分子篩,該等分子篩獨立選自由ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-38、ZSM-48、ZSM-57、ZSM-58及其混合物所組成之群組,且其中該等第一及第二氫化成份各自獨立選自週期表之第6-11族及第14-15族。
[6] 如申請專利範圍第1項之方法,其中該等第一及第二氫化化合物為錸。
[7] 一種反應槽系統,其在依序排列且各別分開但流體連接之床中,含有平均結晶大小大於1微米之第一觸媒及平均結晶大小為0.02到0.05微米之第二觸媒,其中該等第一及第二觸媒各含有一分子篩及一經硫化之氫化成份,其中該等分子篩均未經矽土選擇化處理且係獨立選自由ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-38、ZSM-48、ZSM-57、ZSM-58及其混合物所組成之群組,其中該第一觸媒具有比該第二觸媒高的α值,且其中該第一觸媒係與第一C8芳香族烴類混合物接觸及該第二觸媒係與第二C8芳香族烴類混合物接觸。
[8] 如申請專利範圍第7項之反應槽系統,其中於該等第一觸媒及第二觸媒上之該等氫化成份係獨立選自週期表之第6-11族及第14-15族。
[9] 如申請專利範圍第7項之反應槽系統,其中於該等第一觸媒及第二觸媒兩者中,該氫化成份為錸及該分子篩為ZSM-5。
[10] 如申請專利範圍第7項之反應槽系統,其中該氫化成份為錸。
类似技术:
公开号 | 公开日 | 专利标题
TWI474862B|2015-03-01|對二甲苯之製造
JP4934588B2|2012-05-16|キシレン異性化触媒系とその使用方法
JP4634607B2|2011-02-23|キシレンの異性化
JP2006523679A|2006-10-19|エチルベンゼン及びキシレンの異性化
BRPI0716626A2|2013-10-08|Catalisador de transalquilação, e, processos para a produção de um catalisador de transalquilação e para a produção de xileno
TW200940495A|2009-10-01|Ethylbenzene conversion and xylene isomerization processes and catalysts therefor
TWI469829B|2015-01-21|雙金屬觸媒及彼於製造二甲苯上之用途
WO2002088056A1|2002-11-07|Xylene isomerization
TW200940496A|2009-10-01|Xylene isomerization process and apparatus
Yan et al.2011|Mixed naphtha/methanol feed used in the thermal catalytic/steam cracking | process for the production of propylene and ethylene
KR102252012B1|2021-05-17|중질 방향족 탄화수소의 불균화 및 알킬교환
KR102252013B1|2021-05-17|중질 방향족 탄화수소의 탈알킬화 및 알킬교환
TWI697360B|2020-07-01|重芳烴轉化法及其中所用之觸媒組成物
WO2011061204A1|2011-05-26|Catalyst and isomerisation process
US20160059224A1|2016-03-03|Method and Catalyst System for the Production of Para-Xylene
MXPA00010008A|2001-07-31|Xylene isomerization
同族专利:
公开号 | 公开日
CN103764602B|2015-11-25|
JP2014529623A|2014-11-13|
CA2842809A1|2013-03-07|
SG2014002240A|2014-04-28|
US8835705B2|2014-09-16|
US20140350316A1|2014-11-27|
TWI474862B|2015-03-01|
CN103764602A|2014-04-30|
WO2013032630A3|2013-06-13|
US20130197286A1|2013-08-01|
CN105198684A|2015-12-30|
WO2013032630A2|2013-03-07|
CA2842809C|2016-06-07|
KR20140034311A|2014-03-19|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US4899011A|1986-01-15|1990-02-06|Mobil Oil Corporation|Xylene isomerization process to exhaustively convert ethylbenzene and non-aromatics|
CA1299588C|1987-08-25|1992-04-28|Kuniyuki Tada|Process for conversion of ethylbenzene in c _aromatic hydrocarbon mixture|
JPS6456626A|1987-08-25|1989-03-03|Toray Industries|Method for converting ethylbenzene in 8c aromatic hydrocarbon mixture|
US5028573A|1990-01-29|1991-07-02|Mobil Oil Corp.|Dual function catalyst and isomerization therewith|
US5516956A|1994-11-18|1996-05-14|Mobil Oil Corporation|Dual bed xylene isomerization|
TW504501B|1995-02-10|2002-10-01|Mobil Oil Corp|Process for converting feedstock comprising C9+ aromatic hydrocarbons to lighter aromatic products|
US6028238A|1998-04-14|2000-02-22|Mobil Oil Corporation|Xylene isomerization|
JP2005224793A|2003-07-08|2005-08-25|Toray Ind Inc|エチルベンゼン含有キシレン類の変換触媒およびその触媒を用いたエチルベンゼン含有キシレン類の変換方法|
US7247762B2|2003-09-12|2007-07-24|Exxonmobil Chemical Patents Inc.|Process for xylene isomerization and ethylbenzene conversion|
US7271118B2|2004-07-29|2007-09-18|Exxonmobil Chemical Patents Inc.|Xylenes isomerization catalyst system and use thereof|
JP5292699B2|2006-03-29|2013-09-18|東レ株式会社|エチルベンゼンの転化方法およびパラキシレンの製造方法|
US7566810B2|2006-09-12|2009-07-28|Uop Llc|Xylene production processes employing rhenium-containing catalysts|
CN101842336B|2007-10-31|2014-05-07|埃克森美孚化学专利公司|重芳烃加工催化剂及其使用方法|US10988421B2|2013-12-06|2021-04-27|Exxonmobil Chemical Patents Inc.|Removal of bromine index-reactive compounds|
CN106660906A|2014-10-31|2017-05-10|埃克森美孚化学专利公司|采用硫化的二甲苯异构化方法|
US11059034B2|2016-10-06|2021-07-13|Shell Oil Company|Alkylaromatic conversion catalyst|
KR20210126696A|2019-03-29|2021-10-20|엑손모빌 케미칼 패턴츠 인코포레이티드|신규한 제올라이트, 이의 제조 방법, 및 방향족 탄화수소의 전환에서의 이의 용도|
TWI739357B|2019-03-29|2021-09-11|美商艾克頌美孚化學專利股份有限公司|新穎沸石、其製法、及其於轉化芳族烴之用途|
WO2022026129A1|2020-07-31|2022-02-03|Exxonmobil Chemical Patents Inc.|Processes for producing high-octane-number fuel component|
法律状态:
2017-12-01| MM4A| Annulment or lapse of patent due to non-payment of fees|
优先权:
申请号 | 申请日 | 专利标题
US201161529519P| true| 2011-08-31|2011-08-31||
[返回顶部]